skip to main content
10.5555/2873003.2873012acmconferencesArticle/Chapter ViewAbstractPublication PageshtConference Proceedingsconference-collections
research-article

Rule-based modelling and simulation of drug-administration policies

Published:12 April 2015Publication History

ABSTRACT

We consider rule-based models extended with time-dependent reaction rates, a suitable formalism to describe the effect of drug administration on biochemical systems. In the paper, we provide a novel and efficient rejection-based simulation algorithm that samples exactly the trajectory space of such models. Furthermore, we investigate a model of drug administration in the context of a plaque-formation process of Alzheimer's disease, a polymerization process best described by a rule-based model to counteract the intrinsic combinatorial explosion of the underlying reaction network. Furthermore, time-dependent rates are needed to model the effect of drugs. We apply the simulation algorithm to study the efficacy of different drug administration policies.

References

  1. H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. PNAS, 94(3):814--819, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  2. P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS, 99(20):12795--12800, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  3. H. Tobita. Simulation model for the modification of polymers via crosslinking and degradation. Polymer, 36(13):2585--2596, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22:403--434, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry, 81(25):2340--2361, 1977.Google ScholarGoogle Scholar
  6. M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with many species and many channels. The journal of physical chemistry A, 104(9):1876--1889, 2000.Google ScholarGoogle Scholar
  7. M. Rathinam, L. R. Petzold, Y. Cao, and D. T Gillespie. Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. The Journal of Chemical Physics, 119(24):12784--12794, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of cellular signalling. Lect Note Comput Sci, 4703:17--41, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. R. Faeder, M. L. Blinov, B. Goldstein, and W. S. Hlavacek. Rule-based modeling of biochemical networks. Complexity, 10:22--41, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. RD van Parijs, K. Morreel, J. Ralph, W. Boerjan, and R. MH Merks. Modeling lignin polymerization. i. simulation model of dehydrogenation polymers. Plant physiology, 153(3):1332--1344, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. W. Sneddon, J. R. Faeder, and T. Emonet. Efficient modeling, simulation and coarse-graining of biological complexity with nfsim. Nature Methods, 8:177--185, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  12. V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular signaling networks. In Programming Languages and Systems, pages 139--157. Springer, 2007. Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Yang, M. I. Monine, J. R. Faeder, and W. S. Hlavacek. Kinetic monte carlo method for rule-based modeling of biochemical networks. Physical Review E, 78(3):031910, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time semantics for markov chains. Information and computation, 200(2):149--214, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Zhang, M. Yeddanapudi, and P. Mosterman. Zero-crossing location and detection algorithms for hybrid system simulation. In IFAC World Congress, pages 7967--7972, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  16. V. Holubec, P. Chvosta, M. Einax, and P. Maass. Attempt time monte carlo: An alternative for simulation of stochastic jump processes with time-dependent transition rates. EPL (Europhysics Letters), 93(4):40003, 2011.Google ScholarGoogle Scholar
  17. D. J. Selkoe. Toward a comprehensive theory for alzheimer's disease. Annals of the New York Academy of Sciences, 924(1):17--25, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  18. I. Benilova, E. Karran, and B. De Strooper. The toxic Aβ oligomer and alzheimer's disease: an emperor in need of clothes. Nature neuroscience, 15(3):349--357, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. L. Craft, L. M. Wein, and D. J. Selkoe. A mathematical model of the impact of novel treatments on the aβ burden in the alzheimers brain, csf and plasma. Bulletin of mathematical biology, 64(5):1011--1031, 2002.Google ScholarGoogle Scholar
  20. K. G. Haug, A. Staab, C. Dansirikul, and T. Lehr. A semi-physiological model of amyloid-β biosynthesis and clearance in human cerebrospinal fluid. The Journal of Clinical Pharmacology, 53(7):691--698, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. A. Lewis and G. S. Shedler. Simulation of nonhomogeneous poisson processes by thinning. Naval Research Logistics Quarterly, 26(3):403--413, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  22. V. H. Thanh, C. Priami, and R. Zunino. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays. The Journal of chemical physics, 141(13):134116, 2014.Google ScholarGoogle Scholar
  23. D. F. Anderson. A modified next reaction method for simulating chemical systems with time dependent propensities and delays. The Journal of chemical physics, 127(21):214107, 2007.Google ScholarGoogle Scholar
  24. J. Hardy and D. J. Selkoe. The amyloid hypothesis of alzheimer's disease: progress and problems on the road to therapeutics. Science, 297(5580):353--356, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  25. R. J. Bateman, L. Y. Munsell, J. C. Morris, R. Swarm, K. E. Yarasheski, and D. M. Holtzman. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nature medicine, 12(7):856--861, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. J. Bateman, E. R. Siemers, K. G. Mawuenyega, G. Wen, K. R. Browning, W. C. Sigurdson, K. E. Yarasheski, S. W. Friedrich, R. B. DeMattos, P. C. May, et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Annals of neurology, 66(1):48--54, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  1. Rule-based modelling and simulation of drug-administration policies

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Article Metrics

        • Downloads (Last 12 months)4
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader